Reg. No.								
Ü								

Question Paper Code 13703

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

First Semester

Civil Engineering

(Common to All Branches except CSBS)

24BSPH101 - ENGINEERING PHYSICS

Regulations - 2024

	Regulations - 2024			
Dι	nration: 3 Hours Max	k. Mar	ks: 1	00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	co
1.	Stress-strain curve can be used to know	1	K2	CO1
	(a) the structural load of materials (b) the bearing capability of materials			
_	(c) the loadability of materials (d) All of the mentioned	7	77.1	G01
2.	When a beam is subjected to simple bending, is the same in both tension	1	KI	CO1
	and compression for the material. (a) Modulus of elasticity (b) Modulus of section (c) Poisson ratio (d) None			
3.	(a) Modulus of elasticity (b) Modulus of section (c) Poisson ratio (d) None Two waves are propagating with same amplitude the nearly same frequency in opposite	1	K1	CO2
٥.	direction they result in			
	(a) beats (b) stationary wave (c) resonance (d) wave packet			
4.	Which process is responsible for amplification of the light in LASER?	1	K1	CO2
	(a) blackbody radiation (b) Einstein oscillation			
~	(c) Planck's radiation (d) stimulated emission	1	νo	CO3
5.	A travelling wave is described by the equation $y(x,t) = [0.05\sin(8x - 4t)]$ m. The velocity of the wave is	1	KΖ	COS
	(a) 8 ms ⁻¹ (b) 4 ms ⁻¹ (c) 0.5 ms ⁻¹ (d) 2 ms ⁻¹			
6.	Differential form of Gauss law in magnetostatics is	1	K2	CO3
	(a) $\nabla \cdot B = \rho$ (b) $\nabla \cdot B = 0$ (c) $\nabla \cdot B = \mu_0 J$ (d) $\nabla \cdot B = -\frac{\partial B}{\partial t}$			
7.	Wien's displacement law holds good for	1	K1	CO4
,.	(a) shorter wavelength (b) longer wavelength (c) visible region (d) infrared region			
8.	If an electron and a proton have same de-Broglie wavelength then the kinetic energy of	1	<i>K1</i>	CO4
	the electron is			
	(a) less than that of proton (b) more than that of proton			
0	(c) equal to that of proton (d) Zero	1	K1	CO5
9.	Number lattice points in primitive cell is (a) One (b) Two (c) Three (d) Depends on type of Bravais lattice	1	K1	003
10.	The rate of heat transfer is maximum for	1	K1	CO6
	(a) conduction (b) convection (c) radiation (d) all the mentioned			
	$PART - B (12 \times 2 = 24 Marks)$			
11	Answer ALL Questions	2	<i>K1</i>	CO1
	What is elasticity?			
12.	Define Poisson's ratio.	2	K1	COI
13.	, , , , , , , , , , , , , , , , , , , ,	2	<i>K1</i>	
14.	List out the characteristics of Laser.	2	K1	CO2
15.	Explain about momentum and energy relation of electromagnetic waves.	2	K2	CO3
16.	What is polarization in electromagnetic waves?	2	<i>K1</i>	CO3
17.	What is black body radiation?	2	K1	CO4
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		137	03

	Enumerate the physical significance of wave function.									
19.	19. Copper has FCC structure whose atomic radius is 1.26×10^{-10} m. Calculate its lattice constant.									
20.	20. Sketch (101) and (111) planes for a cubic crystal.									
21.	21. What is the principle of solar water heater?									
22.	22. Name the different types of heat exchangers.									
$PART - C (6 \times 11 = 66 Marks)$										
		Answer ALL Questions								
23.	a)	Describe with necessary theory, the method to determine the Young's modulus of the material of a rectangular bar by uniform bending. OR	11	<i>K3</i>	CO1					
	b)	Derive an expression for depression at the free end of a cantilever due to load.	11	<i>K3</i>	CO1					
24.	a)	Explain the formation of fringes in an air wedge shaped film. How is the thickness of wire determined by this method?	11	К3	CO2					
		OR								
	b)	Describe the vibration modes of CO ₂ molecules. Explain the principle, construction and working of a CO ₂ laser.	11	<i>K3</i>	CO2					
25.	a)	Describe the production of electromagnetic waves in detail.	11	K2	CO3					
	OR									
	b)	Derive the Maxwell's equations.	11	K2	CO3					
26.	a)	Derive Planck's law for black body radiation.	11	K2	CO4					
		OR								
	b)	Derive an expression for energy levels of a particle enclosed in one dimensional potential box of width 'a' and infinite height.	11	K2	CO4					
27.	a)	Derive the c/a ratio and atomic packing factor of HCP structure.	11	K2	CO5					
	• .	OR		7/2	005					
	b)	Derive an expression for interplanar distance for a cubic system.	11	K2	CO5					
28.	a)	Describe Forbe's method to determine thermal conductivity of metals with relevant theory.	11	К3	CO6					
		OR			.					
	b)	Discuss the principle, construction and working of refrigerator.	11	K3	CO6					