Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13756

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Electronics and Communication Engineering

(Common to Electrical and Electronics Engineering & Computer and Communication Engineering)

24BSPH201 - PHYSICS OF ELECTRONIC DEVICES

Regulations - 2024

D	uration: 3 Hours Max	k. Marl	ks: 10	00		
PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$						
	Answer ALL Questions	Marks	Level	co		
1.	Quantum free electron theory assumes electrons are charged particles and obey	1	K1	CO1		
	principle.					
	(a) Pauli's Exclusion (b) Aufbau (c) Hund's (d) None of the above					
2.	The resistance of the conductor is inversely proportional to	1	K1	CO1		
	(a) Length (b) area of cross-section (c) Temperature (d) resistivity					
3.	A direct Band gap semiconductor emits energy as	1	K1	CO2		
	(a) phonon (b) photon (c) positron (d) exciton					
4.	The Fermi level shifts in intrinsic semiconductor with increase in temperature.	1	<i>K</i> 2	CO2		
	(a) upward (b) downward					
_	(c) either upward or downward (d) neither upward nor downward	7	W1	G02		
5.	The relation between β and α is	1	K1	CO3		
	(a) $\beta = 1/(1-\alpha)$ (b) $\beta = (1-\alpha)/\alpha$ (c) $\beta = \alpha/(1-\alpha)$ (d) $\beta = \alpha/(1+\alpha)$	1	K1	CO3		
6.	After peak point, the UJT operates in the region (a) Cut off (b) Seturation (c) Negative registered (d) Negative (d) Negative	1	K1	COS		
7.	(a) Cut-off (b) Saturation (c) Negative resistance (d) None of the above Identify the expression for magnetic induction from the following.	1	K1	CO4		
/.	(a) $B = \mu_0(H+I)$ (b) $B = \mu_0(H\times I)$ (c) $B = \mu_0(H-I)$ (d) $B = \mu_0(H/I)$	•		007		
8.	When the electrical field is applied to the dielectric, the force acting on nucleus and	1	K1	CO4		
о.	electron cloud is					
	(a) Lorentz force (b) Coulomb force (c) Electric force (d) Magnetic force					
9.	Identify the key characteristic of the Franz-Keldysh effect?	1	<i>K</i> 2	CO5		
	(a) A sharp, sudden increase in absorption at the bandgap.					
	(b) A gradual increase in absorption below the bandgap.					
	(c) A decrease in absorption below the bandgap.					
	(d) A shift in the bandgap energy.					
10.	Which material system is often used to create quantum wells in optoelectronics?	1	K1	CO6		
	(a) GaAs/AlGaAs (b) Cu/Fe (c) Si/SiO ₂ (d) Ag/Au					
	$PART - B (12 \times 2 = 24 Marks)$					
	Answer ALL Questions	2	V1	COL		
	State Wiedemann Franz law.	2		CO1		
12.	Using Fermi function, evaluate the probability of an electron in a metal with	2	<i>K</i> 2	CO1		
	$E-E_F = 0.01eV$ at 300 K.			~~		
13.	What is negative temperature coefficient of resistance?	2	<i>K1</i>	CO2		
14.	The following data are given for an intrinsic Ge at 280 K. Calculate the conductivity of the sample. (n_i = 2.5 x10 ¹⁹ m ⁻³ , μ_e = 0.35 m ² V ⁻¹ S ⁻¹ , μ_p = 0.19 m ² V ⁻¹ S ⁻¹).	2	K2	CO2		
15	Write the design of the base, emitter and collector of a BJT.	2	K1	CO3		
	Differentiate a BJT and FET.	2	K2	CO3		
		2		CO4		
1/.	Draw hysteresis curve.	2	NΔ	C <i>U</i> 4		

18.	3. List the types of dielectric breakdown.				CO4
19.	9. Mention the process of carrier recombination that takes place in materials.			K1	CO5
20.	0. Compare linear and nonlinear optical effects.			K2	CO5
21.	21. Define the Coulomb blockade effect.				CO6
22.	Illusti	rate the confinement in quantum structures.	2	K2	CO6
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	State the assumptions o f classical free electron theory model and apply it to derive the electrical conductivity of solids.	11	К3	CO1
		OR			
	b)	Use band theory of solids, derive an expression for the effective mass of an electron moving in energy bands.	11	К3	CO1
24.	a)	Obtain an expression for the carrier concentration of electrons in the conduction band of an n-type semiconductor with a neat energy band diagram. \mathbf{OR}	11	К3	CO2
	b)	Apply carrier transport semiconductor principles to explain the construction, working and V-I characteristics of a P-N Junction diode. Also discuss the advantages and applications of P-N Junction Diode.	11	К3	CO2
25.	a)	Demonstrate with a neat sketch, the construction, working, of an N-channel D-MOSFET.	11	K2	CO3
	• .	OR	1.1	1//2	goa
	b)	Explain the semiconductor conduction principle to explain the construction, working operation and characteristics of SCR with a neat sketch.	11	K2	CO3
26.	a) (i)	Discuss the types of energy involved in the domain growth.	6	K2	CO4
	, , ,	Brief the cause for magnetism and classify materials.	5	K2	CO4
		OR			
	b) (i)	Brief the types of polarization in dielectrics.	6	K2	CO4
	(ii)	Deduce the Clausius- Mossoti equation applying internal field.	5	K2	CO4
27.	a)	Briefly discuss about emission of light from metals and semiconductors. OR	11	K2	CO5
	b)	Explain construction and working of self electro-optic effect devices (SEED) with a neat diagram.	11	K2	CO5
28.	a)	Explain how the construction and working of single electron transistors. OR	11	К3	CO6
	b)	Develop ways to tune the wavelength of light emitted from a quantum dot. And also utilize it for the construction and working of quantum dot lasers.	11	К3	CO6