Question Paper Code	13758
----------------------------	-------

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Computer Science and Engineering

(Common to Artificial Intelligence and Data Science, Computer Science and Engineering (AIML), Computer Science and Engineering (Cyber Security), Computer Science and Engineering (IoT), Information Technology & M.Tech. - Computer Science and Engineering (5 Years Integrated))

24BSPH203 - PHYSICS FOR INFORMATION SCIENCE

Regulations - 2024

Duration: 3 Hours			Iarks	: 100	
PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		Manka	<i>K</i> –	CO	
	Answer ALL Questions	Marks			
1.	The microscopic form of Ohm's law is:	1	<i>K1</i>	CO1	
2	(a) $V = IR$ (b) $J = \sigma E$ (c) $J = IR$ (d) $J = F/Q$	1	K1	CO1	
2.	Based on Band theory, electrons are moving in ——— potential. (a) periodic (b) constant (c) infinite (d) None of them	1	ΚI	COI	
3.	A semiconductor is formed by bonds.	1	K1	CO2	
٥.	(a) Covalent (b) Electrovalent (c) Coordinate (d) None of the above				
4.	Uneven distribution of charge carriers causes the current is known as	1	<i>K1</i>	CO2	
	(a) Drift current (b) Diffusion current (c) current density (d) Seebeck current.				
5.	Which type of magnetic material has negative susceptibility	1	K1	CO3	
	(a)Dia (b) Para (c) Ferro (d) Ferri	1	νı	CO3	
6.	The boundaries separating the domains are called (a) Domain rotation (b) Movement of domain (c) Domain wall (d) none of this	1	ΚI	COS	
7.	(a) Domain rotation (b) Movement of domain (c) Domain wall (d) none of this If the transition temperature is above 30 K, such kind of superconductors are known as	1	<i>K1</i>	CO4	
,.	(a) soft (b) hard (c) low temperature (d) high temperature				
8.	Which device emits photons when electron transitions occur between molecular orbitals	1	K1	CO4	
	(a) LED (b) LCD (c) QLED (d) OLED				
9.	The bulk material is reduced to three dimensions is known as	1	<i>K1</i>	CO5	
1.0	(a) quantum well (b) quantum wire (c) quantum dot (d) bulk material	7	V1	CO6	
10.	Instead of bits, quantum computers use	1	K1	CO6	
	(a) Quantum byte (b) qubit (c) Byte (d) Kilobyte				
$PART - B (12 \times 2 = 24 Marks)$					
Answer ALL Questions					
11.	State the Wiedemann-Franz law.	2	<i>K1</i>	CO1	
12.	Explain effective mass of an electron.	2	K2	CO1	
13.	List out the differences between n-type and p-type semiconductors.	2	<i>K1</i>	CO2	
14.	What is a direct bandgap semiconductor?	2	K1	CO2	
15.	Define Bohr magneton.	2	<i>K1</i>	CO3	
	Iron has a relative permeability of 5000. Calculate its magnetic susceptibility.	2	<i>K</i> 2	CO3	
		2	K2	CO4	
	Define Meissner effect.	2	<i>K1</i>	CO4	
	What is quantum confinement?	2	K1	CO5	
	•	2	K1	CO5	
20.	• 11	2		CO6	
	Write the differences between classical bits and qubits.		Kl		
22.	Write the column vector for $ 0\rangle$ and $ 1\rangle$.	2	ΚI	CO6	
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		13	<i>758</i>	

PART - C (6 × 11 = 66 Marks)

Answer ALL Questions 11 K3 CO1 23. Derive an expression for the electrical and thermal conductivity of a metal. a) OR 11 K3 CO1 Derive an expression for the density of states of a solid. b) 24. Derive an expression for the density of electrons in the conduction band for an *K3* CO2a) intrinsic semiconductor. OR 11 *K3* CO2Derive an expression for the Hall coefficient for an n-type semiconductor. b) 11 25. Differentiate between dia, para and ferromagnetic materials. *K*2 CO3 a) OR Explain the different types of energy involved in domain growth for ferromagnetic *K*2 CO3 b) materials. Describe the construction and working of an OLED. 11 CO4 *K*3 26. a) OR 6 *K3* CO4 b) (i) Explain type-I and type-II superconductors. 5 *K3* CO4 (ii) Explain the following phenomenon, (a) Persistent current (b) Isotope effect. 27. Derive the expression for the density of states of a quantum well, quantum wire *K3* CO5 a) and quantum dot. OR

Describe the construction and working of a single-electron transistor. b)

11 K3 CO5

Explain truth tables of X-Gate, Y-Gate, Z-gate and H-Gate using their matrix 28. a) form.

*K*2 CO6

OR

b) Describe how does a CNOT gate work. 11 K2 CO6