Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13761

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Computer Science and Business Systems

24BSPH205 - PRINCIPLES OF ELECTRONICS ENGINEERING

Regulations - 2024

Dı	aration: 3 Hours	Max. Marl	ks: 10	00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –	
	Answer ALL Questions	Marks	Level	co
1.	An electron and a hole in close proximity would tend to	1	K1	CO1
	(a) attract each other (b) repel each other (c) have no effect on each other (d) destroy each other			
2.	Forbidden energy gap contains electrons that	1	K1	CO1
	(a) Belong to innermost orbits of atoms (b) Belong to outermost orbits of atom	oms		
_	(c) Are shared to form a bond between atoms (d) It contains no electrons	_		~~*
3.	The knee voltage of a crystal diode is approximately equal to	1	K1	CO2
	(a) applied voltage (b) breakdown voltage (c) forward voltage (d) barrier potential			
4	(c) forward voltage (d) barrier potential	1	<i>K1</i>	CO2
4.	The zener diode is heavily doped because(h) to have high breekdown voltage.	1	KI	CO2
	(a) to have low breakdown voltage (b) to have high breakdown voltage (c) to have high current variations (d) to maintain perfect quiescent point			
5.	If alpha=0.98, I_{co} =6 μ A, & I_{B} =100 μ A for a transistor, then the value of I_{c} will be	1	K2	CO3
٥.	(a) 2.3mA (b) 3.1mA (c) 4.6mA (d) 5.2mA		112	000
6.	The word 'diode' is used to indicate that the device has	1	K1	CO3
0.	(a) two junctions (b) two electrodes			
	(c) two anodes (d) two cathodes			
7.	In the voltage-series feedback topology, the feedback signal is applied:	1	K1	CO4
	(a) In series with the output (b) In series with the input			
	(c) In parallel with the input (d) In parallel with the output			
8.	Feedback decreases the output impedance of an amplifier in:	1	<i>K1</i>	CO4
	(a) Voltage-series feedback (b) Voltage-shunt feedback			
	(c) Current-series feedback (d) Current-shunt feedback			
9.	In differential-mode,	1	K2	CO5
	(a) opposite polarity signals are applied to the inputs (b) the gain is one			
4.0	(c) the outputs are of different amplitudes (d) only one supply voltage is u		77.1	006
10.	The input offset current equals the	1	K1	CO6
	(a) difference between two base current (b) average of two base current (c) as Plantage parameter divided by average (d) page of these			
	(c) collector current divided by current gain (d) none of these			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Define Fermi energy level.	2	<i>K</i> 2	CO1
12.	What is meant by donor energy level?	2	K1	CO1
13.	Draw the V-I characteristics of Pn junction diode.	2	<i>K</i> 2	CO2
14.	What is Avalanche breakdown?	2	<i>K1</i>	CO2
15.	What is cut off region?	2	<i>K1</i>	CO3
16.	Compare JFET and MOSFET.	2	<i>K3</i>	CO3

17.	Distinguish between positive and negative feedback.						
18.	3. Define bandwidth of an amplifier.						
19.	9. What are PID circuits?				CO5		
20.	0. What is the frequency response of an OP-AMP?				CO5		
21.	21. Define Full subtractor.				CO6		
22.	2. Why NAND gates are universal?						
PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions							
23.	a)	Derive an expression for the density of holes in an intrinsic semiconductor. OR	11	K3	CO1		
	b)	Derive an expression for the carrier concentration in N-type semiconductor and also explain the variation of Fermi energy level and carrier concentration with temperature in an extrinsic semiconductor.	11	К3	CO1		
24.	a)	Explain the forward and reverse bias of PN junction diode.	11	К3	CO2		
2	u)	OR					
	b)	With neat sketch explain the mechanism of half wave rectifier.	11	К3	CO2		
25.	a)	How do you construct a transistor in C-B configuration? Explain its characteristics. OR	11	K2	СОЗ		
	b)	How do you construct n-JFET? Explain its performance and reliability in switching applications.	11	K2	CO3		
26.	a) (i)	Write down the various characteristics of topology.	6	K2	CO4		
	(ii)	In designing a feedback control system for a precision amplifier, how would you utilize CCVS configurations to optimize the system's performance? Explain. OR	5	K2	CO4		
	b) (i)	Explain the construction and working of Colpitts Oscillator.	6	K2	CO4		
	(ii)	Deduce relation for input and output impedance of the feedback amplifier.	5	K2	CO4		
27.	a)	How do you develop a differentiator using op-amp? Explain. OR	11	K2	CO5		
	b)	How would you construct an operational amplifier in the non-inverting configuration to achieve a desired voltage gain? Explain.	11	K2	CO5		
28.	a)	Develop the working of half adder and full adder using circuit diagrams and truth tables.	11	К3	CO6		
		OR	, ,	***	ac.		
	b)	What are flip-flops? Explain any three types of flip-flops.	11	<i>K3</i>	CO6		