Reg. No.								

Question Paper Code 13760

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / **MAY 2025**

Second Semester

Electronics and Instrumentation Engineering

(Common to Electronic Instrumentation and Control Engineering)

24BSPH206 - PHYSICS FOR INSTRUMENTATION ENGINEERING

Regulations - 2024

Dui	Max. Ma	rks: 1	00			
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co		
	Answer ALL Questions					
1.	What happens to the free electrons when an electric field is applied?	1	K1	CO1		
	(a) They move randomly and collide with each other.					
	(b) They move in the direction of the field.					
	(c) They remain stable.(d) They move in the direction opposite to that of the field.					
2.	What is the level that acts as a reference which separates the vacant and filled states at	1	K1	CO1		
۷.	0 K?					
	(a) Excited level (b) Ground level (c) Valance orbit (d) Fermi energy lev	el				
3.	In a semiconductor, what is the ratio of the diffusion current to the drift current?	1	K1	CO2		
	(a) Directly proportional to the mobility (b) Directly proportional to the electric field					
	(c) Inversely proportional to the mobility (d) Inversely proportional to the electric field					
4.	What is the diffusion coefficient proportional to?	1	<i>K1</i>	CO2		
	(a) Mobility (b) Electric field (c) Temperature (d) Both mobility and temperature	re				
5.	What is the area of the hysteresis loop proportional to?	1	<i>K1</i>	CO3		
	(a) The energy lost per cycle (b) The magnetic field strength.					
	(c) The magnetization of the material (d) The permeability of the material.		77.1	g 0.3		
6.	What is the cause of hysteresis loss?	1	K1	CO3		
	(a) The reversal of magnetization (b) The alignment of magnetic domain					
7	(c) The random orientation of magnetic domains (d) The demagnetization of the material	ai 1	K1	CO4		
7.	What type of transition is involved in indirect band gap semiconductors? (a) Direct transition (b) Indirect transition	1	K1	CO4		
	(a) Direct transition(b) Indirect transition(c) Both direct and indirect transitions(d) Neither direct nor indirect transition					
8.	What is the process of emission of photons due to the recombination of electrons a	nd l	K1	CO4		
0.	holes?	ii d				
	(a) Absorption (b) Emission					
	(c) Radiative recombination (d) Non-radiative recombination.					
9.	Why does the band gap increase in nano materials?	1	K1	CO5		
	(a) Due to the increase in the number of atoms					
	(b) Due to the decrease in the number of atoms.					
	(c) Due to quantum confinement effects.					
	(d) Due to surface effects.		77.1	go.		
10.	What is the effect of quantum confinement on the band structure of nano materials?	1	K1	CO6		
	(a) The bands become broader.					
	(b) The bands become narrower.					
	(c) The bands split into discrete energy levels.					
	(d) The bands disappear.					
	$PART - B (12 \times 2 = 24 Marks)$					
Answer ALL Questions						
11.	List the drawbacks of classical free electron theory.	2	<i>K1</i>	CO1		
12.	Explain effective mass of electron.	2	K2	CO1		
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		13760	9		
	1					

13.	Show	the differences between direct and indirect band gap semiconductors.	2	<i>K1</i>	CO2	
14.	What is a Schottky diode? Give its uses.					
15.	Define magnetic susceptibility.				CO3	
16.	. Define coercivity.				CO3	
17.	7. Calculate the wavelength emitted by a semiconductor whose band gap energy is 1.44 ev.				CO4	
18.	Give	the uses of solar cell.	2	<i>K1</i>	CO4	
19.	19. Calculate the polarization produced in a dielectric medium of dielectric constant 6 and it is subjected to an electric field of 100 V/m. Given $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m.				CO5	
20.	Defin	e polarisation of a dielectric material.	2	<i>K</i> 2	CO5	
21.	21. Explain quantum confinement.				CO6	
22.	Distir	nguish between quantum computing over classical computing.	2	K2	CO6	
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions				
23.	a)	Apply the classical free electron model to derive an expression for the electrical and thermal conductivity of a metal. OR	11	K3	CO1	
	b)	Derive an expression for the density of states using quantum free electron theory of solids.	11	К3	CO1	
24.	a)	Derive an expression for the density of electrons in the conduction band for an intrinsic semiconductor.	11	К3	CO2	
	b)	OR Apply the Hall effect principle to derive the Hall coefficient and Hall voltage in n-type semiconductor.	11	К3	CO2	
25.	a)	Classify the magnetic materials (Ferromagnetic, Paramagnetic, Diamagnetic materials) and explain the fundamental differences between them. OR	11	K2	CO3	
	b)	Describe the magnetic hard disk based on a GMR sensor.	11	K2	СОЗ	
26.	a)	Discuss about the theory of generation and recombination in charge carriers. OR	11	K2	CO4	
	b)	Explain the principle, construction, working of Laser Diode with neat sketch.	11	K2	CO4	
27.	a)	Relate the term internal field in dielectric by using Lorentz method. OR	11	K2	CO5	
	b)	Explain Ferroelectric material and its energy converter application.	11	K2	CO5	
28.	a)	Derive the expression for the density of states of a quantum well and quantum wire. OR	11	K3	CO6	
	b)	Explain the construction and working of Single Electron Transistor.	11	<i>K3</i>	CO6	