Reg. No.						

Question Paper Code

13725

M.E. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Big Data Analytics 24PBDPC202 - BIG DATA SECURITY

Regulations - 2024

Dur	. Marks: 100						
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions						
1.		on Cipher text "YMJTYMJWXNIJTKXNQJSHJ", the message is sypted by Caesar cipher and k=5. Try to decrypt the message.	2	K2 CO1			
2.							
3.	3. Tell about elliptic curve.						
4.	4. Is the Diffie Hellman key exchange protocol vulnerable? Justify.						
5.	5. Differentiate Message Authentication Code and Hash function.						
6.	6. Define the classes of message authentication function.						
7.	7. Summarize the process of simulation in Security Analytics.						
8.	8. Compare various types of log files used in Security Analytics.						
9.	9. Identify different types of security breaches and provide examples of each.						
10.		pare and contrast Access Analytics and Text Mining in terms of their cation in security analysis.	2	K2 CO5			
PART - B $(5 \times 13 = 65 \text{ Marks})$							
11.	a)	Answer ALL Questions Explain various transposition ciphers in detail.	13	K2 CO1			
	,	OR					
	b)	Demonstrate the strength and weaknesses of substitution and transposition ciphers with suitable examples.	13	K2 CO1			
12.	a)	Explain the key generation, encryption, and decryption in ElGamal. OR	13	K2 CO2			
	b)	Discuss the discrete logarithm with example.	13	K2 CO2			
13.	a)	Illustrate Hash function algorithm is designed? Explain their features and properties.	13	K3 CO3			

13725

- b) Determine the classification of authentication function in detail. 13 K3 CO3
- 14. a) Design a comprehensive security process incorporating various ¹³ ^{K4} ^{CO4} analytics techniques for a large-scale organization.

OR

- b) Propose innovative approaches to overcome challenges in intrusion ¹³ ^{K4} ^{CO4} and incident identification using advanced analytics methods.
- 15. a) Assess the impact of a security breach on an organization's operations 13 K4 CO5 and reputation.

OR

b) Utilize text mining techniques to extract meaningful insights from ¹³ ^{K4} ^{CO5} security-related documents or logs.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) User A & B exchanges the key using Diffie Hellman algorithm. ¹⁵ K4 CO2 Assume á=5, q=11, XA=2, and XB=3. Find YA, YB, and K.

OR

b) Design a text mining algorithm tailored to detect specific security 15 K4 CO5 threats in large volumes of unstructured data.