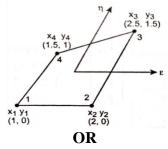
Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

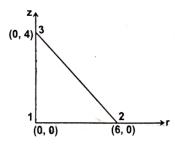
Question Paper Code

13721

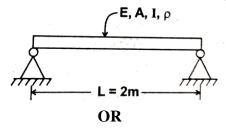
M.E. - DEGREE EXAMINATIONS, APRIL / MAY 2025

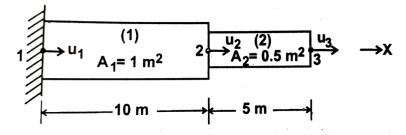

Second Semester

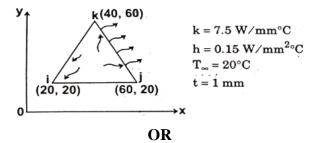
M.E. - CAD/CAM

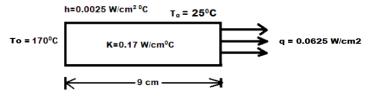

24PCDPC202 - ADVANCED FINITE ELEMENT ANALYSIS

Regulations - 2024


Duration: 3 Hours Max								
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions				Marks K- CO				
1.	Illust	rate the methods generally associated with finite element analysis.	2	K2	CO1			
2.	Wha	What do you mean by Boundary conditions?						
3.	Write	2	K1	CO1				
4.	Asse	2	K2	CO1				
5.	5. What is meant by Transverse vibration?							
6.	. Define Resonance.							
7.	7. Write down the Stiffness Matrix for 1D Heat conduction element with free end Heat convection.				CO1			
8.	B. Differentiate Conduction, Convection and Radiation.							
9.	9. What is the purpose of linearization in nonlinear analysis?				CO1			
10.	Wha analy	t is the role of Newton-Raphson method in nonlinear finite element vsis?	2	K1	CO1			
11.	a)	PART - B (5 × 13 = 65 Marks) Answer ALL Questions Discuss the various applications of Finite Element Analysis in engineering. How does FEA enhance the design and analysis	13	К3	CO1			
		processes in different fields? OR						
	b)	Solve the differential equation for a physical problem expressed as $d^2y/dx^2 + 50 = 0$, $0 \le x \le 10$ with boundary conditions as $y(0)=0$ and $y(10)=0$ using (i) Least square method and (ii) Galerkin method.	13	К3	CO1			
12.	a)	Evaluate the Jacobian matrix for the isoparametric quadrilateral element shown in the figure.	13	К3	CO1			


b) Calculate the element stiffness matrix for the axisymmetric triangular element shown in fig. The coordinate are in mm. Take $E=2x10^5$ N/mm², v=0.25.


13. a) Find the Natural frequencies in the vibration of two elements simply 13 K3 COA supported beam having the parameters as length L = 2m, area of cross-section A = 30 x $^{10^{-4}}$ m² and moment of inertia I = 4 x $^{10^{-10}}$ m⁴, density $\rho = 7800$ kg/m³ and Young's modulus E = 200 GPa.


b) Determine the first two natural frequencies of longitudinal vibration of 13 K3 COI the stepped steel bar shown in fig. All the dimensions are in m $E=30 \times 10^{10} \text{ N/m}^2$. and $\rho=8500 \text{ kg/m}^3$.

14. a) Calculate the element equations for the element shown in figure, ¹³ ^{K3} ^{CO1} which experiences convection on the side jk and its upper face.

b) Calculate the temperature distribution in the stainless steel fin of ¹³ ^{K3} ^{CO1} circular cross section shown in the figure. The cross section of the fin is circular with diameter of 2 cm. The region can be discretized in 3 elements of equal sizes.

15. a) Derive the governing differential equation for a nonlinear bar under 13 K2 CO1 axial loading. Explain how material nonlinearity is incorporated.

OR

b) Explain how geometric nonlinearity is modeled in truss and beam ¹³ ^{K2} ^{CO1} elements. Provide relevant equations.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Trace the historical development of Finite Element Analysis. Discuss 15 K3 CO1 key milestones and contributions that led to its current state in engineering analysis.

OR

b) Find the deflection at the centre of a simply supported beam of span ¹⁵ ^{K3} ^{CO1} length 'L' subjected to uniformly distributed load throughout its length, using (i) Point collocation method (ii) Galerkin method.