Question Paper Code

13687

M.E. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

M.E. - Embedded System Technologies 24PESPC201 - REAL TIME OPERATING SYSTEMS

Regulations - 2024

Du	ration: 3 Hours	Max. Marks: 100		
	$PART - A (10 \times 2 = 20 Marks)$	Marks $K - CO$		
1	Answer ALL Questions List any two functions of an OS.	2 K1 CO1		
2.	•	2 K1 CO1		
3.	Define Real-Time Operating System (RTOS).	2 K1 CO2		
3. 4.	What is critical section in RTOS?	2 K1 CO2		
4 . 5.		2 K2 CO3		
	Illustrate interrupt processing in RTOS.	2 K1 CO3		
6. 7	Give the importance of synchronization in RTOS?	2 KI CO4		
7.	List the principles of an RTOS kernel.	2 K1 CO4		
8.	What is RTOS porting?	2 K1 CO5		
9.	11	2 K1 CO5		
10.	Define Embedded Operating System.	2 KI COS		
	PART - B $(5 \times 13 = 65 \text{ Marks})$			
11.	Answer ALL Questions a) Describe the different types of system calls with examples.	13 K2 CO1		
11.	OR			
	b) Describe the concept of distributed scheduling.	13 K2 CO1		
	by Describe the concept of distributed scheduling.			
12.	a) Explain multithreaded preemptive scheduling with an example.	13 K2 CO2		
12.	OR			
	b) With a neat sketch explain the states of an RTOS task.	13 K2 CO2		
	b) with a near sketch explain the states of all KTOS task.			
13.	a) Compare event based precess based and graph based models	13 K2 CO3		
13.	a) Compare event-based, process-based, and graph-based models. OR	10 112 000		
		13 K2 CO3		
	b) Cite an example and explain Earliest Deadline first algorithm.	13 K2 CO3		
1.4	a) Describe the leaved asign issues in real time beautals	13 K2 CO4		
14.	a) Describe the key design issues in real-time kernels.	13 K2 CO4		
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create				
	I			

OR

		PART - C $(1 \times 15 = 15 \text{ Marks})$			
	b)	Outline the development of RTOS applications using C Executive.	13	K2	CO5
15.	a)	Explain how uCOS-II is used in embedded applications. OR	13	K2	CO5
	,	Discuss the process of porting an RTOS to a target system.			
	1- \	Discuss the masses of menting on DTOC to a torrest existent	13	K2	COA

16. a) Build a Yamba application using the main Android building blocks.

15 K3 CO6

b) Develop an Android-based real-time system to manage home 15 K3 CO6 automation.