	Re	g. No.								
	Question Paper Code	123	516							
M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2023										
First Semester										
M.E Communication Systems										
20PCOPC101 - ADVANCED RADIATION SYSTEMS										
	(Regulations	2020)								
Duration: 3 Hours Max. Mark						ks: 10	00			
	PART - A (10 × 2 Answer ALL Q		ks)							
1.	State Huygen's principle.							Ma K-Lev 2,K1,		
2.	List the merits and demerits of offset feed	reflector a	ntenn	a.				2,K1,	,CO2	
3.	Illustrate the effects of phase quantization.						2,K2,CO3			
4.	State the principle of phased array antenna.						2,K1,CO3			
5.	List the drawbacks of microstrip array.						2,K1,CO4			
6.	Write the design formula(s) for a rectangul	ar patch a	ntenn	a.				2,K1,	,CO4	
7.	Interpret the role of a folded dipole in Yag	'agi antenna.					2,K2,CO5			
8.	Mention the advantages and disadvantages	of Vivaldi antenna.					2,K1,CO5			
9.	Draw the block diagram to measure the rac					nna.		2,K1,CO6		
10.	Outline the features of an anechoic chambe	-						2,K2,	,CO6	

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) Derive the electric and magnetic field equations for a rectangular ^{13,K2,CO2} aperture on an infinite ground plane.

OR

- b) Describe in detail the radiation from a parabolic reflector. *13,K2,CO2*
- 12. a) Derive the parameters of broadside array, end fire array and Hansen ^{13,K2,CO3} Woodyard array and compare the expressions obtained.

OR

- b) Explain in detail the basic structure of a phased array. Also describe its ^{13,K2,CO3} application in tracking.
- 13. a) Using suitable diagram and equations, explain the design procedure ^{13,K2,CO4} involved in the Microstrip array and feed network design.

OR

- b) Describe the radiation of a circular patch antenna in cavity model. 13,K2,CO4
- 14. a) (i) Explain the construction and working of Log periodic dipole ^{7,K2,CO5} antenna with a neat diagram.
 (ii) Describe about base station and hand set antenna.

OR

- b) Design a yagi uda antenna of six elements to provide a gain of 12 dB 13,K2,CO5 if the operating frequency is 200MHz.
- 15. a) Analyze the CATR reflector edge treatments to reduce the diffracted ^{13,K2,CO6} fields in the quiet zone.

OR

b) "Free space ranges are designed to suppress the contributions from the ^{13,K2,CO6} surrounding environment" Justify.

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) (i) The normalized radiation intensity of an antenna is represented ^{7,K3,CO1} by U=Cos² θ Cos² (3 θ), ($0 \le \theta \le 90^{\circ}$, $0 \le \emptyset \le 360^{\circ}$). Find the half-power beam width and first-null beam width in radians and degrees.
 - (ii) The radial component of the radiated power density of an antenna ^{8,K3,CO1} is given by $W_{rad} = a_r A_0 \sin\theta/r^2 W/m^2$, find the maximum directivity of the antenna. Write an expression for the directivity as a function of the directional angles and \emptyset .

OR

b) The radiation intensity of an antenna is given by $U(\theta, \emptyset) = B_0 Sin\theta Sin^2 \emptyset$, ^{15,K3,CO1} $0 \le \theta \le \pi$, $0 \le \emptyset \le \pi$, and 0 elsewhere. Determine the maximum directivity using numerical techniques. Compare it with the exact value