			Reg N	0						Τ				٦
			Reg. I	0.										
		Question Paper Co	de	1	23	30								
		M.E. / M.Tech DEGREE EX		AT]	IOI	NS, N	IO	7/]	DEC	202	23			
		First	Semeste	r										
		M.E Commu	nicatior	ı Sy	yste	ems								
2	OPC	COPC102 - ADVANCED DIGITA	L CON	1M	UN	ICA	TIC)N	TEC	CHN	IQ	UES	5	
_		(Regulat	ions 202	20)							-			
Dur	atior	a: 3 Hours			[])			Ма	ax. N	Mar	ks: 1	100	
		PARI - A (10 Answer AI	X Z = Z(I Oues) NI tior	ari	(S)								
1	De	fine BER What is its significance?		101	15							M K-L a 2.K	lark evel,	s, CO
1. 2	Illustrate Dicion Channel								2,K2,CO1					
2.	What is the significance of eve pattern in communication channels?								2.K2.CO2					
<i>J</i> . 4	Examine the causes for ISI								2,K2,CO2					
5.	State Shannon's Channel Coding Theorem								2,K1,CO3					
6.	When a (n, k) linear block code is called Hamming code? If the minimum $2,K2,CO3$ hamming distance of a (n, k) linear block code is 3, then what is its minimum Hamming weight. And find out the hamming weight of the codes 101010 and 010101.								03					
7.	State maximum likelihood decoding.								2,K	2,K1,CO4				
8.	Differentiate LBC and Convolutional codes.							2,K	2,K2,CO4					
9.	Examine the need of multiuser detection in CDMA systems.							2,K	2,K2,CO5					
10.	Wł	What is the purpose of successive interference cancellation?							2,K	2,K2,CO5				
11.	a)	PART - B (5 × Answer AI (i) Explain the principle of optime	13 = 65 L Ques um recei	5 M tior	l arl ns r us	ks) ed in	W	GN.				7,K	(2,C	01
		(ii) Illustrate the characteristics diagram.	of Ra	ylei	igh	cha	nnel	W	vith	a n	eat	6,K	(2,C	01
		0	R											
	b)	(i) Explain the principle of IQ mod	lulation	an	d de	emod	ulat	tion	۱.			7,K	(2,C	01
		(ii) Summarize the characteristics	of Ricia	ın c	har	inels.						6,K	(2,C	01
12.	a)	(i) Derive the minimum mean squ feedback equalizer.	lared er	ror	for	zero	o foi	rcin	ıg De	ecisi	ion	13,1	K3,C	202

OR

- b) Calculate the transfer function and impulse response of duobinary ^{13,K3,CO2} systems which is used to control the ISI with appropriate diagram.
- 13. a) State the properties of binary cyclic codes. Derive the polynomial ^{13,K3,CO3} representation of its code vector.

OR

- b) Examine the error probability performance for BPSK and Viterbi ^{13,K3,CO3} Algorithm.
- 14. a) Examine the key features, merits and demerits of modulation and ^{13,K3,CO4} demodulation in an OFDM system.

OR

b) Elaborate about modulation and demodulation in an OFDM systems 13,K3,CO4

15.	a)	Explain	
		(i) Optimum Multiuser receiver	7,K2,CO5
		(ii) Suboptimum Detection.	6,K2,CO5

OR

b) Develop the concept of multicarrier modulation techniques in OFDM ^{13,K2,CO5} with suitable diagrams.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) A convolutional encoder has single shift register with two stages three 15,K3,CO3 modulo – 2 adders and an output multiplexer. The following generator sequences are combined by the multiplexer to produce the encoder output. g1 = (1, 0, 1), g2= (1 1 0) and g3 = (1 1 i) Draw the block diagram of the encoder (ii)For the message sequence(1 0 0 1 1) Determine encoded sequence.

OR

 b) Differentiate cyclic codes from convolutional codes and Draw a rate ¹/₂ ^{15,K3,CO3} convolutional encoder and draw its Trellis diagram representation. Explain them in detail.