	Reg. No.						
	Question Paper Code12298						
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2023						
	First Semester						
	M.E Embedded Systems Technologies						
	(Common to Power Electronics and Drives)						
201	PESMA102 - APPLIED MATHEMATICS FOR ELECTRICAL ENGINI	EERS					
	(Regulations 2020)						
D	uration: 3 Hours Max. Marks	: 100					
	PART - A $(10 \times 2 = 20 \text{ Marks})$						
	Answer ALL Questions						
1.	Determine the canonical basis for the matrix $A = \begin{pmatrix} 3 & 5 \\ -2 & -4 \end{pmatrix}$.	Marks, K-Level, CO 2,K2,CO1					
2.	Define Least square method.	2,K1,CO1					
3.	What are the direct methods in variational problems?	2,K2,CO2					
4.	1						
5.	5. State Baye's theorem.						
6.	Obtain the moment generating function of Geometric distribution.	2,K2,CO3					
7.	Write down the mathematical formulation of L.P.P.	2,K1,CO4 2,K1,CO4					
8.	8. When will you say a transportation problem is said to be unbalanced?						
	9. Find the Fourier constants b_n for x sinx in $(-\pi,\pi)$.						
10.	State the properties of the eigen values of a Regular Sturm -Liouville System.	2,K1,CO5					
	PART - B (5 × 16 = 80 Marks)						
Answer ALL Questions							
11. a	(a) $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}.$	16,K3,CO1					
	Find the QR factorization of $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$						

OR

16,K3,CO1

Obtain the singular value decomposition for $\begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ 2 & -2 & 6 \end{pmatrix}$.

b)

12. a) Find the approximate solution by Rayleigh – Ritz method of differential ^{16,K3,CO2} equation $y'' + x^2y = x$ with y(0) = y(1) = 0.

b) On which curve the functional $V[y(x)] = \int_0^{\pi} (y'^2 - y^2 + 4y\cos x) dx$ is ^{16,K3,CO2} extremal.

13. a) A random variables X has the following probability function:

16,K3,CO3

	Х	0	1	2	3	4	5	6	7
	P(X)	0	K	2K	2K	3K	K ²	2K ²	$7K^{2} + K$
(i). FindK.									

(ii). Find the distribution function of X.

(iii). If $P[X \le C] > 1/2$ Find the minimum value of C.

(iv). Find $P(X < 6), P(X \ge 6)$.

OR

- b) (i) State and prove Memoryless property of Exponential distribution. 8,K2,CO3
 (ii) The number of monthly breakdown of a computer is a random 8,K3,CO3 variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month: (a) Without breakdown (b) With only one breakdown and (c) With at least one breakdown.
- 14. a) Use simplex method to solve the LPP Maximize $Z = 4x_1 + 10x_2$ subject to $2x_1 + x_2 \le 50; 2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ and $x_1, x_2 \ge 0.$ OR
 - b) The processing times in hours for the jobs when allocated to different *16,K3,CO4* machines are indicated below. Assign the machine for the jobs so that the total processing time is minimum.

	M_1	M_2	M_3	M_4	M_5
\mathbf{J}_1	9	22	58	11	19
J_2	43	78	72	50	63
J_3	41	28	91	37	45
J_4	74	42	27	49	39
J_5	36	11	57	22	25

15. a) (i) Obtain Fourier series expansion for the function 8,K3,CO5 $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0\\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$. Hence prove that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

> (ii) Find the eigen values and eigen functions of $y'' + \lambda y = 0$, 0 < x < p, 8,K3,CO5 y (0) = 0, y (p) = 0. OR

b) Find an expression for the Fourier coefficients associated with the generalized Fourier series arising from the eigen functions of $y'' + y' + \lambda y = 0, 0 < x < 3, y(0) = 0, y(3) = 0.$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12298

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12298