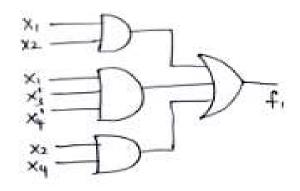

				Re	g. No.								
		Qu	12.	317									
	M.E	. / M.Tech	DEGRI	EE EXAM	IINATIO	NS, N	IOV	/ [DEC	202	23		
				First Sem	ester								
		M.]	E Embee	dded Syste	ems Tech	nolog	ies						
	20PESP	C101 - AI	VANCEI) DIGITA	L PRINC	CIPLE	ES A	NI) DE	SI	GN		
			(R	egulations	2020)								
Du	ration: 3 Hou	ırs		-					Ma	x. 1	Mark	cs: 1	00
			PART -	A (10 × 2	= 20 Mai	·ks)							
				wer ALL Q		,							
1.	Pagallagt f	ha Charaot	oristic cau	ation and t	obla of Ik	flint	flon					K-Le	larks , evel, (1,CC
	Recollect the Characteristic equation and table of JK flip flop.											,	, ,
2.		Recall the excitation table for JK flipflop. $2,KI,C$											
3.	Bring out t	he importa	nce of state	e reductior	1.							2,K	(2,CC
4.	Give the minimizing	reduced s g the hardw		in the d	esign of	seque	entia	1 c	ircui	ts	for	2,K	2,CC
		Present	Next	Next	Output	Out	tputz	,2					
		state	state	state	Z1	0 u	-p atz						
		a	d	b	0		0						
		b	e	a	0		0						
		с	g	f	0		1						
		d	a	d	1		0						
		e	а	b	1		0						
		f	d	b	0		0						
		g	а	e	1		0						
5	Bring out t	he differen	ce hetweet	n the stuck	at 0 and	stuck (at 1 f	fami	lt .			2.K	2.CC

5.	Bring out the difference between the stuck at 0 and stuck at 1 fault.	2,K2,CO3
6.	State the importance of Built in Self Test.	2,K1,CO3
7.	Differentiate between PAL and PLA.	2,K2,CO4
8.	List the important features of Xilinx FPGA family.	2,K1,CO4
9.	Outline the advantage of reconfigurable logic designs.	2,K2,CO5
10.	State the advantages of CLBs.	2,K1,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Illustrate the Transition table, Excitation table, state table and state ^{13,K2,CO1} diagram for the following synchronous sequential circuit and


- b) An Asynchronous sequential circuit is given by the following excitation and output function $Y1 = x_1x_2 + x_1y_2+x_2y_1$ $Y_2 = x_2+x_1y_1y_2 + x_1y_1$ $Z = x_2+y_1$ (i) Draw the logic diagram of the circuit. (ii) Derive the transition table and output map. 8,K2,CO1
- 12. a) In the design a network produces a 1 if and only if the current input ^{13,K3,CO2} and the previous 3 inputs correspond to either of the sequence 1001 or 0110. The one output occurs at the time of fourth input of the recognized sequence. Output of 0 is to be produced at all other times and the sequences are allowed to overlap. Give the state diagram and the reduced state table.

OR

- b) Design a 0110/1001 sequence detector. Give the state diagram and the 13, K3, CO2 reduced state table.
- 13. a) Derive the primitive flow table and state Diagram for the system with ^{13,K2,CO3} inputs X and Y and output Z. Initially both inputs and outputs are 0. If X = 1 and Y = 0 output Z=1. When X = 0 and Y = 1 output Z=0.If X = Y = 0 or X = Y = 1 then output Z has no change. The logic system has edge triggered input and any static inputs will not have any effect on the system output Z.

OR

b) For a given diagram, find a-test using kohavi algorithm to find faults in 13, K2, CO3 x1.

14. a) Discuss in detail the interconnects and memory architecture of Xilinx ^{13,K2,CO4} 2000 with necessary diagram.

OR

- b) Explain in detail the Programmable Electrically Erasable Logic and the ^{13,K2,CO4} different Programming Techniques.
- 15. a) A combinational logic circuit is defined by the function given below. ^{13,K2,CO5} Implement the circuit using Programmable Array Logic. $F(R,S,T,U) = \sum(3,5,7,14,15)$ $G(R,S,T,U) = \sum(3,4,5,7,10)$ OR
 - b) Implement the following Boolean function using Programmable Logic 13,K2,CO5 Array.

 $W(A, B, C, D) = \sum (0,2,6,7,8,9,12,13)$ $X(A, B, C, D) = \sum (0,2,6,7,8,9,12,13,14)$ $Y(A, B, C, D) = \sum (2,3,8,9,10,12,13)$ $Z(A, B, C, D) = \sum (1,3,4,6,9,12,14)$

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Analyze the operation of 4:1 Multiplexer and compare the VHDL *15,K4,CO6* programming model of the same.

OR

b) Compare and contrast the structural and behavioral modeling of VHDL ^{15,K4,CO6} with suitable examples.