[Re	g. No.											
Question Paper Co	de	1	23	18									
M.E. / M.Tech DEGREE EX	(AN Sem	[INAT]	[0]	NS,	, N	OV	7/]	DE	C2	202	23		

M.E. - Power Electronics and Drives 20PPEPC101 - ADVANCED POWER SEMICONDUCTOR DEVICES

(Regulations 2020)

Duration: 3 Hours

recovery power diode.

Max. Marks: 100

PART - A (10 × 2 = 20 Marks)

Answer ALL Questions

1.	Explain the softness factor of a diode.	Marks, K-Level, CO 2,K2,CO1
2.	Schottky diode has no turn on transient and has little turn off transient. Interpret on this statement.	2,K2,CO1
3.	Illustrate how the secondary breakdown is avoided in BJT.	2,K2,CO2
4.	Interpret the preference of vertical structure type construction in power transistors.	2,K2,CO2
5.	Explain the applications of IGBT.	2,K2,CO3
6.	Explain the limitations of MOSFET and the need for isolation of power semiconductor devices.	2,K2,CO3
7.	Compare BJT and MCT in terms of gate circuit.	2,K2,CO4
8.	Interpret how the gate of a thyristor is protected against over voltage and over current.	2,K2,CO4
9.	Explain latch-up mode of an IGBT.	2,K2,CO5
10.	Show how the heat sink selection is made for a particular rating of a fast	2,K2,CO5

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) Explain the device selection strategy based on the power rating of the 13, K2, CO1 load.

OR

- b) Demonstrate in detail the EMI impact due to switching of the power ^{13,K2,CO1} semiconductor devices.
- 12. a) Explain the VI characteristics of a NPN Power transistor and discuss ^{13,K2,CO2} quasi saturation effect.

OR

b) Explain the operation of MCT. Discuss its advantages over other ^{13,K2,CO2} devices.

13. a) Demonstrate the steady state and dynamic state models of MOSFET ^{13,K2,CO3} with suitable diagrams.

OR

- b) Outline the MOSFET circuit model during cut off mode, saturation and *13,K2,CO3* ohmic mode of operation.
- 14. a) Explain various cooling methods used for power devices and for power ^{13,K2,CO4} converter modules in detail.

OR

- b) Identify the protection method employed to protect SCR from transient ^{13,K3,CO4} and over currents.
- 15. a) Explain how to calculate the average power loss in a semiconductor 13, K2, CO5 switch.

OR

b) Show how the heat sink selection is made for a particular rating of a ^{13,K2,CO5} fast recovery power diode.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a)	(i) Explain how the gate gets triggered with high dv/dt.	7,K2,CO4
		(ii) Explain the features of different types of heat sink.	<i>8,K2,CO5</i>
		OR	

b) (i) Explain how snubbers are designed for IGBT protection. 7,K2,CO4 (ii) Explain the significance of intelligent power modules. 8,K2,CO5