	Reg. No.	
	Question Paper Code12301	
	M.E. / M.Tech DEGREE EXAMINATIONS, NOV / DEC 2023 First Semester	
M.E Power Electronics and Drives 20PPEPC105 - SPECIAL MACHINES AND CONTROLLERS		
Dur	ration: 3 Hours Max. Mar	ks: 100
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks
1.	Compare conventional DC motor and PMBLDC motor.	K-Level, CO 2,K2,CO1
2.	List any four permanent magnet materials.	2,K1,CO1
3.	Draw the phasor diagram of permanent magnet synchronous motor.	2,K1,CO2
4.	State the power controllers for permanent magnet synchronous machines.	2,K1,CO2
5.	Draw the speed- torque characteristics of Switched Reluctance Motor.	2,K1,CO3
6.	Why rotor position sensor essential for the operation of Switched Reluctance Motor?	2,K2,CO3
7.	The stepper motor has a step angle of 1.8° and is driven at 4000 pps. Determine Resolution & Rotor speed.	2,K2,CO4
8.	Mention the advantages of closed loop operation of stepper motor.	2,K1,CO4
9.	Define cogging.	2,K1,CO5
10.	Classify the types of rotor available synchronous reluctance motor.	2,K2,CO5

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) With relevant waveforms, derive the expression for torque and emf of ^{13,K2,CO1} permanent magnet brushless DC motor.

OR

- b) Discuss in detail about magnetic circuit analysis of permanent magnet ^{13,K2,CO1} brushless DC motor. Also draw its characteristics.
- 12. a) Describe the construction of phasor diagram of surface magnet sine ^{13,K3,CO2} wave motor.

OR

b) With a neat sketch, explain the microprocessor based speed control of ^{13,K2,CO2} permanent magnet synchronous motor.

13. a) Draw a schematic diagram and explain the operation of a "C" dump ^{13,K2,CO3} K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create **12301** converter used for the control of SRM.

OR

- b) (i) Draw and explain the characteristics of switched relsuctance motor. 7,K2,CO3 (ii) Derive the expression of static torque in SRM. 6,K2,CO3
- 14. a) (i) A stepper motor has a resolution of 180 steps per revolution. Find 7,K3,CO4 the pulse rate required in order to obtain a rotor speed of 2400 rpm.
 - (ii) Explain the dynamic characteristics of a variable reluctance stepper *6,K2,CO4* motor.

OR

- b) Describe in detail about the drive circuits and their performance ^{13,K2,CO4} characteristics of stepper motor.
- 15. a) Explain in detail about the construction, principle and operation of 13, K2, CO5 hysteresis motor and also mention its applications.

OR

b) (i) Summarize the applications of linear induction motor.7,K2,C05(ii) Describe briefly about the repulsion motor.6,K2,C05

PART - C (1 × 15 = 15 Marks)

16. a) Derive the relationship between magnetizing force and flux density by ^{15,K3,CO1} performing the magnetic circuit analysis of brushless DC motor.

OR

- b) A variable reluctance stepper motor has a step angle of 3° . Determine ^{15,K3,CO4} the following
 - (i) Resolution.
 - (ii) No. of steps per shaft to make 10 revolutions.
 - (iii) Shaft speed if stepping frequency is 2400 pulse/sec.