Reg. No.

Question Paper Code

12156

Max. Marks: 100

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Sixth Semester

Electronics and Communication Engineering EC8651 - TRANSMISSION LINES AND RF SYSTEMS

(Smith Chart is permitted) (Regulations 2017)

Duration: 3 Hours

PART-A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks, K-Level, CO
1.	Find the reflection coefficient of a transmission line having characteristic	2,K2,CO1
	impedance $Zo = 300\Omega$ and terminating impedance in $Z_R = 300 + j400\Omega$.	
2.	Define primary constants of transmission line.	2,K1,CO1
3.	Define node and antinode.	2,K1,CO2
4.	Determine L and C of a lossless transmission line has a characteristic	2,K2,CO2
	impedance of 300Ω and wavelength of 2.5m operates at 80 MHz frequency.	
5.	What is the significance of $\lambda/2$ line?	2,K2,CO3
6.	List the significance of short circuit stubs.	2,K2,CO3
7.	What is meant by dominant mode?	2,K2,CO4
8.	Differentiate between evanescent and degenerate modes for waveguides.	2,K1,CO4
9.	Differentiate between PN junction and Schottky contact.	2,K2,CO6
10.	Define the condition of stability circuit design.	2,K1,CO6

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

- 11. a) (i) Estimate the voltage and current at any point in the transmission ^{8,K2,CO1} line with reference to receiving end terminal.
 - (ii) A telephone line has $R = 6\Omega/km$, L=2.2mH/km, $C=0.005\mu F/km$ and 5, K3, CO1 G=0.05X10⁻⁶ mho/km. Determine the Zo and γ at 1KHz.

OR

- b) (i) What are the types of waveform distortion introduced by a ^{6,K2,CO1} transmission line? Derive the conditions for distortion less transmission line.
 - (ii) A telephone line has Zo = 776.52-j 321.96Ω , $\gamma = 0.0105 \angle 66.65^{\circ}\Omega$. *7,K3,CO1* Find R, L, G and C.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12156

12.	a)	(i) Derive the expression for the input impedance of dissipation less line and sketch the input impedance at various location of	6,K3 ,C02	
		transmission line.(ii) Derive the expression of standing wave ratio and Discuss the relationship with reflection coefficient.OR	7,K2 ,C02	
	b)	(i) Demonstrate the VSWR of a RF transmission system with experimental set up.	6,K3,CO2	
		(ii) Discuss the various parameters of open wire and coaxial line at radio frequency.	7,K2,CO2	
13.	a)	(i) Describe of quarter wave length line and its application.	6,K2,CO3	
)	(ii) Design a quarter wave transformers to match a load of 200 Ω to a source resistance of 500 Ω . The operating frequency is 200 MHz. OR	7,K3,CO3	
	b)	A 50 Ω lossless feeder line is to be matched to an antenna with $Z_L = (75-j20)\Omega$ at100 MHz using Single Shorted stub. Find the stub length and distance between the antenna and stub using smith chart.	13,K3,CO3	
14.	a)	Derive the field expression for TM wave propagation in rectangular waveguide stating the necessary assumptions and sketch the field distribution along the waveguide.	13,K2,CO4	
	b)	Derive the expression for the field strengths for TE wave between a pair of parallel perfectly conducting planes of infinite extent in the Y and Z directions. The plates are separated in the X direction by 'a' meter and sketch the field distribution.	13,K2,CO4	
15.	a)	(i) Explain the principle and working of RF field effect transistor.	7,K2,CO6	
	,	(ii) Explain briefly about Mixer circuit and its application in RF system design.	6,K2,CO6	
	1 \	OR CONTRACTOR	7 12 001	
	b)	(i) Explain different types of RF power amplifiers with neat sketch.(ii) Explain the concept of stability and instability Using stability circles.	7,K3,CO6 6 K3,CO6	
PART C (1 × 15 = 15 Marks)				

16. a) For a rectangular air-filled copper waveguide with dimension 2 cm X ^{15,K3,CO5} 1 cm cross-section and 30 cm length is operated at 9 GHz with a dominant mode. Find the (i)cut-off frequency, (ii)guided wavelength, (iii)phase velocity, (iv)characteristic impedance.

OR

b) Derive the expressions of field components for TE and TM modes in a ^{15,K3,CO5} rectangular waveguide.