				Reg. No.							
			Question Paper Code	12599							
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024										
Sixth Semester											
		E	Question Paper Code12599h DEGREE EXAMINATIONS, APRIL / MAY 2024 Sixth Semesterectronics and Communication Engineering - TRANSMISSION LINES AND RF SYSTEMS Regulations - 2017 (Use of Smith Chart is permitted)Max. Marks: 100PART - A (10 × 2 = 20 Marks) Answer ALL QuestionsMarks K^- cocoefficient of a 50 ohm transmission line when it is of 60+j40 ohm. /e ratio? Z KI $CO2$ to be satisfied by a dissipationless line. ode in rectangular waveguide? Z KI $CO3$ ghth wave line? Z KI $CO4$ wavelength of a rectangular waveguide whose inner S cm and b=1.03 cm operating at TE10 mode. Power Amplifiers. Z KI $CO6$ PART - B (5 × 13 = 65 Marks) Answer ALL QuestionsAnswer ALL Questions A KI $CO6$ PART - B (5 × 13 = 65 Marks) Answer ALL QuestionsAnswer ALL Questions A KI $CO6$ PART - B (5 × 13 = 65 Marks) Answer ALL QuestionsAnswer ALL Questions								
EC8651 - TRANSMISSION LINES AND RF SYSTEMS											
Regulations - 2017											
(Use of Smith Chart is permitted)											
Du	ration	: 3 Hours					М	ax. Ma	arks:	100	
			``	,				Mari	K – KS Leve	, со	
1.	Defi	ne propagation	-	uestions							
2.		1 1 0		n transmissio	on lir	ne w	hen it	is ²	K2	COI	
2	term	inated by aload	of 60+j40 ohm.						<i>K1</i>	CO^{2}	
		e		nationlaga lin				_			
4. 5			•	pationness nin	le.						
5. 6											
6. 7.			-	auida?				_			
7. 8.	Calc	ulate the cutof	f wavelength of a rectar	ngular wave	-		ose inr				
9.		dimensions are a= 2.3 cm and b=1.03 cm operating at TE10 mode.List out the types of Power Amplifiers.2K1CO6							<i>CO6</i>		
		• •	-	stors?				2	K1	<i>CO6</i>	
11.	a)	-	Answer ALL Q eneral transmission line	uestions equation for	r the	Volt	tage a	nd 13	K1	CO1	
	current at any point on a transmission line.										
	b)	-	ail about the primary con			•	constar	nts 13	K2	CO1	
12.	a)			-					K2	<i>CO2</i>	
			0.5								

OR

- b) i) List out the parameters of open wire and coaxial cable at High 6 K1 CO2 frequency.
 - ii) A certain transmission line, working at radio frequencies, has 7 K3 CO2

12599

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

following constants L = 9 and C = 16 PF/m. The line is terminated in a resistive load of 1000. Calculate the reflection co-efficient and standing wave ratio.

13. a) An antenna with impedance of $40+j30\Omega$ is to be matched to a 100Ω ¹³ ^{K3} ^{CO3} lossless line with a short circuited stub. Determine the following using Smith chart. (i) The required stub admittance (ii) The distance between the stub and antenna (iii) the stub length (iv) the standing wave ratio on each of the system and operating frequency 500 MHz.

OR

- b) Derive the expression of quarter wave line. How a quarter wave line ¹³ K3 CO3 can be used as impedance matching. List out the different methods of impedance matching.
- 14. a) Express the field expression for TE wave propagation in rectangular ¹³ K² CO4 waveguide stating the necessary assumptions.

OR

- b) A standard air filled rectangular waveguide with dimensions a = 8.5 ¹³ ^{K3} ^{CO5} cm and b = 4.3 cm is fed by a 4 GHz carrier from co-axial cable. Calculate if a TE11 mode will be propagated. If so calculate phase velocity and group velocity.
- 15. a) With reference to RF transistor amplifier, explain the considerations ¹³ K3 CO6 for stability and gain.

OR

b) Explain with necessary diagrams the various types of mixers and its ¹³ K² CO6 principle of operation.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) An antenna with impedance of $40+j30\Omega$ is to be matched to a 100Ω ¹⁵ K³ CO³ lossless line with a short circuited stub. Determine the following using Smith chart. (i) The required stub admittance (ii) The distance between the stub and antenna (iii) the stub length (iv) the standing wave ratio on each of the system and operating frequency 500 MHz.

OR

b) Describe the impedance matching technique using single stub and ¹⁵ K3 CO3 obtain the expression for the stub location and stub length.