	Reg. No.		
	Question Paper Code	13195	
B.E. / B.Tech DI	EGREE EXAMINATIO	NS. NOVEMBER	/ DECEMBER 2024

Seventh Semester

Electronics and Communication Engineering EC8701 - ANTENNAS AND MICROWAVE ENGINEERING

Regulations - 2017

Duration: 3 Hours

Max. Marks: 100

13195

	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K – Level	со
1.	Draw the two dimensional radiation pattern of a directional antenna.	2	K2	<i>CO1</i>
2.	Define gain of antenna.	2	<i>K1</i>	CO1
3.	List the disadvantages of loop antennas.	2	<i>K1</i>	<i>CO2</i>
4.	Name the types of feed method for microstrip antenna.	2	<i>K1</i>	<i>CO2</i>
5.	List out the advantages and disadvantages of binomial arrays.	2	<i>K1</i>	CO3
6.	Trace the pattern of two point sources separated by $\lambda/2$.	2	K2	CO3
7.	Define transit time.	2	K1	CO5
8.	Why magnetron is called a cross field device?	2	K2	CO5
9.	Calculate the VSWR of an amplifier, if the amplifier has reflection coefficient 0.2533.	2	K2	<i>CO6</i>
10.	List the advantages of microstrip line matching networks.	2	Kl	<i>CO6</i>

PART - B ($5 \times 13 = 65$ Marks) Answer ALL Questions

11. a) Summarize the Friis transmission equation relating the power received ¹³ K² CO1 to the power transmitted between the antennas separated by a distance of 'R' units.

OR

- b) Explain the concept of (i) Bandwidth, (ii) Beam efficiency, ¹³ K² CO1 (iii) Antenna Temperature.
- 12. a) Compare different types of horn antenna structures with neat ¹³ K³ CO² diagrams. Also determine its directivity and beamwidth.

OR

b) Determine the expression for the radiated fields of a $\lambda/2$ center fed ¹³ K³ CO² dipole antenna. Sketch the radiation pattern of the $\lambda/2$ center fed dipole antenna.

13. a) Explain in detail the Binomial Array and derive the expression for its ¹³ K² CO³ array factor. Also obtain the excitation coefficients and directivity of a seven element binomial array separated by $\lambda/2$.

OR

- b) Express the direction of pattern maxima, direction of pattern minima, ¹³ K2 CO3 beamwidth, directivity of uniform end fire array of four point sources of equal amplitude and spacing.
- 14. a) Illustrate the working principle of two cavity klystron and obtain its ¹³ K² CO5 velocity modulation and bunching parameter.

OR

- b) Explain the working of Gunn diode with two valley model diagram. ¹³ K2 CO5
- 15. a) Summarize the characteristics of amplifier and examine the transducer ¹³ K² CO6 power gain, unilateral power gain, available power gain and operating power gain of a microwave amplifier using S parameters.

OR

b) Explain the concept of RF mixers along with types with neat sketches. ¹³ K2 CO6

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the noise characteristics of a microwave receiver front end ¹⁵ K2 CO4 with necessary diagrams and mathematical expression.

OR

b) Draw a neat diagram describing the magic Tee working principle and ¹⁵ K2 CO4 derive its S-matrix.

13195