Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12172

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Seventh Semester

Electronics and Communication Engineering EC8701 - ANTENNAS AND MICROWAVE ENGINEERING

(Regulations 2017)

Duration: 3 Hours Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Define gain of antenna.	Marks, K-Level, CO 2,K1,CO1
2.	Illustrate the significance of G/T calculation.	2,K2,CO1
3.	Identify any two applications of loop antenna.	2,K2,CO2
4.	Calculate the length of Half wave dipole operating at frequency 30 MHz.	2,K3,CO2
5.	Examine Faraday rotation.	2,K1,CO4
6.	Define reflective attenuators.	2,K1,CO4
7.	State hull-off condition.	2,K1,CO5
8.	Describe the condition for oscillation in the reflex klystron.	2,K2,CO5
9.	Define conversion loss.	2,K1,CO6
10.	Identify the function of a mixer.	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

- 11. a) (i) An antenna has a field pattern given by $E(\theta) = \cos\theta \cos 2\theta$ for $0^{\circ} \le \theta$ 7,*K2,CO1* $\le 90^{\circ}$. Compute (a) HPBW (b) FNBW.
 - (ii) Explain the concept of radiation pattern and directivity of an ^{6,K2,CO1} antenna.

OR

- b) Using Friss transmission formula, estimate the maximum power ^{13,K2,CO1} received at a distance of 1 Km over a free space. A 100 MHz circuit consisting of a transmitting antenna of 30 dB gain and a receiving antenna with a 25 dB gain is used. The power input to the transmitting antenna is 150 W.
- 12. a) Compare different types of horn antenna structures with neat diagrams. 13,K2,CO2 Also determine its directivity and beam width.

OR

- b) Explain in detail about the feeding structure of parabolic reflector 13,K2,CO2 antennas.
- 13. a) Summarize the principles and derive the scattering matrix of a 13,K2,CO4 directional coupler.

OR

- b) Explain the working of magic Tee with neat diagram and also obtain 13,K2,CO4 its scattering matrix.
- 14. a) Determine the working principle of Gunn diode as a transferred ^{13,K2,CO5} electron device with two valley models. Also draw the structure, equivalent circuit and V-I characteristics of Gunn diode.

OR

- b) Describe velocity modulation and explain the working principle of 13,K2,CO5 reflex klystron and bunching parameter.
- 15. a) Describe the characteristics of amplifier and examine the transducer 13,K2,CO6 power gain, unilateral power gain, available power gain and operating power gain of a microwave amplifier using S parameters.

OR

b) Explain about LNA in detail with neat diagrams.

13,K2,CO6

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Trace the radiation pattern of a linear array of 4 isotropic elements 15,K2,CO3 spaced $\lambda/2$ apart and fed in phase with equal currents.

OR

b) Explain binomial array. Draw the pattern of 10 element binomial array 15,K2,CO3 with spacing between the elements of 3 $\lambda/4$ and $\lambda/2$.