	[Reg. N	0.								
	Question Paper Co	de	12	191							
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023											
Sixth Semester											
Mechanical Engineering											
ME8692 - FINITE ELEMENT ANALYSIS											
(Regulations 2017)											
Duration: 3 Hours Max. Mark							cs: 100				
PART - A (10 × 2 = 20 Marks) Answer ALL Questions											
1.	Why polynomial type interpolation fur	nctions a	ire me	ostly	used	in I	FEM	?		Ma K-Le v 2,K2	a rks, v el, CO 2,CO1
2.	List the various weighted residual meth	hods.		-						2.KI	,CO1
3.	Define shape function.									2,K1	,CO2
4.	Differentiate global and local coordina	tes.								2,K2	2,C02
5.	List out the difference between CST ar	nd LST	eleme	ents.						2,K1	,CO3
6.	Assess the required conditions for a pro-	oblem a	ssum	ed to	be ay	kisy	mme	etric.		2,K1	,CO3
7.	Write down the Stiffness Matrix for 11) Heat c	ondu	ction	elem	ient				2,K1	,CO4
8.	What is meant by Longitudinal vibration	on?								2,K2	2,CO4
9.	Differentiate between Isoparametric, elements.	super pa	arame	etric a	and s	sub-	para	metr	ric	2,K2	2,CO5
10.	Define Sub-parametric element.									2,K1	,CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Solve the differential equation for a physical problem expressed as $d^2y/dx^2 + 50 = 0, 0 \le x \le 10$ with boundary conditions as y(0)=0 and y(10)=0 using (i) Point collocation method (ii) Sub domain collocation method (iii) Least square method and (iv) Galerkin method.

OR

b) Determine the deflection at the centre of a simply supported beam ^{13,K3,CO1} subjected to uniformly distributed load over the entire span of length 1 as shown in figure -1. Use Rayleigh Ritz method.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12191

12. a) Derive the stiffness Matrix for one dimensional Linear bar element.

13,K2,CO2

b) Consider a bar as shown in figure-2 an axial load of 200 kN is ^{13,K3,CO2} applied at a point P. Take $A_1 = 2400 \text{ mm}^2$, $E_1 = 70 \times 10^9 \text{ N/mm}^2 A_2 = 600 \text{ mm}^2$ and $E_2 = 200 \times 10^9 \text{ N/mm}^2$. Calculate the following (i) the nodal displacement at point,P (ii) Stress in each element (iii) Reaction force.

13. a) For the plane stress CST element as shown in the figure -3 nodal ^{13,K3,C03} displacements are $u_1 = 2 \text{ mm}$, $u_2 = 1 \text{ mm}$, $u_3 = 2.5 \text{ mm}$, $v_1 = 1 \text{ mm}$, $v_2 = 1.5 \text{ mm}$, $v_3 = 0.5 \text{ mm}$. Determine the element stresses. Assume E = 200 GPa, v = 0.3, t = 10 mm. All coordinates are in mm.

b) The nodal coordinates for an axisymmetric triangular element are ^{13,K3,CO3} given in figure-4. Evaluate the strain-displacement matrix.

14. a) Derive the expression of Stiffness Matrix for heat transfer in 1D ^{13,K3,CO4} element with conduction, convection and internal Heat generation.

OR

b) Compute the element matrices and vectors for the element shown in ^{13,K3,CO4} figure-5. When the edges 2-3 and 1-3 experience convection heat loss.

15. a) Develop the shape function for 4 noded isoparametric quadrilateral ^{13,K3,CO5} element.

OR

b) Evaluate the integral,

$$I = \int_{-1}^{1} Cos \ \frac{\pi x}{2} dx$$

by applying 3 point Gaussian quadrature and compare with exact solution.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Solve the following simultaneous equations using Gaussian ^{15,K3,CO6} elimination method. $4x_1 - 2x_2 + x_3 - 3x_4 = 5$ $x_1 + 5x_2 + 2x_3 = 9$ $2x_1 + x_2 - 4x_3 + x_4 = 6$ $-3x_1 - 4x_2 - 2x_4 = -7$

OR

b) Develop Strain-Displacement matrix for axisymmetric triangular *15,K3,C06* Element.

13,K3,CO5