Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13486

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Artificial Intelligence and Data Science

(Common to Computer Science and Engineering (AIML))

20AIEL603 - INFORMATION RETRIEVAL TECHNIQUES

Regulations - 2020

Dura	ation: 3 Hours	Iax. M	arks	: 100						
	Manka	<i>K</i> –	CO							
	Marks									
1.	1	K1	CO1							
2	1	V1	COL							
2.	1	K1	CO1							
3.	(a) Document storage (b) Query formulation (c) Result ranking (d) Data compression In a probabilistic model, documents are ranked based on:	1	<i>K1</i>	CO2						
3.	(a) Size (b) Score (c) Probability (d) Length	-		002						
4.	Structured text retrieval models are suited for:	1	K1	CO2						
	(a) Plain text (b) Semi-structured data (c) Binary data (d) Images									
5.	Query Expansion helps in:	1	K1	CO3						
	(a) Reducing documents (b) Narrowing the query									
	(c) Broadening the query (d) Compressing data	1	<i>K1</i>	CO3						
6.	Which operation refines search results by user input?		K1	COS						
7.	(a) Query expansion (b) Query compression (c) Query hiding (d) Query encryption SVM stands for:	1	K1	CO4						
7.	(a) Support Vector Machines (b) Structured Vector Model									
	(c) Simple Vector Method (d) Scalar Vector Management									
8.	Which is not a clustering method?	1	K1	CO4						
	(a) K-means (b) DBSCAN (c) Naive Bayes (d) Agglomerative Clustering									
9.	Link analysis is used to determine:	1	<i>K1</i>	CO5						
10	(a) Page size (b) Page importance (c) Page format (d) Page storage	1	<i>K1</i>	CO6						
10.	Distributed IR helps in: (a) Local search (b) Searching serves multiple machines	1	Λ1	000						
	(a) Local search (b) Searching across multiple machines (c) Single-machine search (d) Compression									
PART - B ($12 \times 2 = 24$ Marks)										
Answer ALL Questions										
11.	List two open-source IR systems.	2	K1	CO1						
12.	12. Mention two key characteristics of the Web affecting IR.									
13.	Name two probabilistic models in IR.	2	K1	CO2						
14.	Mention the purpose of scoring and ranking in IR.	2	K1	CO2						
15.	Define query expansion.	2	K1	CO3						
16.	Differentiate between sequential searching and pattern matching.	2	K2	CO3						
17.	Define text classification.	2	<i>K1</i>	CO4						
18.	Define hierarchical clustering.	2	<i>K1</i>	CO4						
19.	What is web crawling?	2	<i>K1</i>	CO5						
20.	Mention two challenges in XML retrieval.	2	<i>K1</i>	CO5						
21.	List two examples of features used in image retrieval systems.	2	<i>K1</i>	CO6						

22.	Defin	ne stop word removal in indexing.	2	K1	CO6
		PART - C $(6 \times 11 = 66 \text{ Marks})$			
23.	a)	Answer ALL Questions Describe in detail about the Architecture of Information Retrieval.	11	K1	CO1
	b)	OR List the components of Information Retrieval and Search engine in detail.	11	K1	CO1
24.	a)	Examine the Boolean and Vector Space model with an example.	11	К3	CO2
		OR			
	b)	Demonstrate the Algebraic models and Set Theoretic Models with an example.	11	<i>K3</i>	CO2
25.	a)	Compare and Contrast relevance feedback and query expansion. OR	11	K2	СОЗ
	b)	Describe automatic global analysis in query processing.	11	K2	СОЗ
26.	a)	Describe in detail about the SVM-based classification model.	11	K2	CO4
		OR			
	b)	Explain the latent semantic indexing to reduce dimensionality of document vectors.	11	K2	CO4
27.	a)	Illustrate about the XML retrieval query with an example.	11	K2	CO5
		OR			
	b)	Explain the structure of the Web and its impact on information retrieval.	11	K2	CO5
28.	a)	Compare and contrast XPath and XQuery for XML information retrieval. Provide examples of their use in querying XML documents. OR	11	K2	CO6
	b)	Explain with examples how partitioning, distributed indexing, and merging strategies help in scaling information retrieval across massive datasets like the web.	11	K2	CO6