Reg. No.								
								i I

Question Paper Code 13442

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Artificial Intelligence and Data Science

Common to Computer Science and Engineering (Artificial Intelligence and Machine Learning)

20AIPC403 - ADVANCED MACHINE LEARNING

Regulations - 2020

Du	ration: 3 Hours Ma	x. Ma	rks:	100					
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	co					
1.	The Ising Model's nodes can have spin states of or	1	<i>K1</i>	CO1					
	(a) $+1$ or -1 (b) 0 or 1 (c) $+2$ or -2 (d) 1 or 2								
2.	The energy functions in a Markov Network are defined using potentials.	1	Kl	CO1					
	(a) clique (b) path (c) network (d) node								
3.	Bayesian networks are	1	Kl	CO2					
	(a) cyclic (b) undirected (c) acyclic (d) directed and acyclic								
4.	Parameter Estimation problem is about:	1	Kl	CO2					
	(a) Identifying Input Parameters (b) Identifying Output Parameters								
	(c) Identifying Model Parameters (d) All of the Mentioned								
5.	VAE loss function composed of and regularization terms can be derived using	1	K1	CO3					
	particular statistical technique of variational interference.								
	(a) normal (b) reconstruction (c) Gaussian (d) None of the Mentioned								
6.	MCMC sampling uses to sample from distribution for the purpose of	1	K1	CO3					
	inference.								
	(a) prior (b) posterior (c) max likelihood (d) likelihood								
7.	The stochastic forward passes illustrate the decomposition of predictive uncertainty into	1	K1	CO4					
	(a) epistemic components (b) aleatoric components								
	(c) supervised components (d) epistemic components and aleatoric components								
8.	By catering to the, Bayesian neural network can avoid the overfitting problem by	1	Kl	CO4					
	addressing the regularization properties.								
	(a) Random distributions (b) probability distributions								
	(c) sequential distributions (d) None of the Mentioned								
9.	In the, base classifiers will output their classifications, and then the Meta-	1	Kl	CO5					
	classifier(s) will make the final classification								
	(a) prediction phase (b) modeling phase								
	(c) classification phase (d) aggregation phase								
10.	In an encoder-decoder framework for time series forecasting, what is the primary role of	1	<i>K1</i>	CO6					
	the encoder?								
	(a) To extract relevant temporal patterns from historical data								
	(b) To directly generate future forecasts without transformations								
	(c) To minimize dependencies between correlated time series								
	(d) To replace probabilistic forecasting with deterministic modeling								
$PART - B (12 \times 2 = 24 Marks)$									
4.4	Answer ALL Questions	2	W2	CO1					
11.	Describe the impact of clique.	2	<i>K</i> 2	CO1					
12.	Differentiate an ising and potts model.	2	<i>K</i> 2	CO1					
13.	Define junction tree calibration.	2	K2	CO2					
	-								

14.	4. List the uses of variable estimation.								
15.	5. Distinguish between forward and importance sampling.				CO3				
16.	5. Define sampling.				CO3				
17.	7. List the abstractions defined by Tensor Flow Distribution.								
18.	Expla	in the autoregressive model in density estimator.	2	K2	CO4				
19.	Defin	e Bayesian Neural Network.	2	K1	CO5				
20.	Illusti	rate the Aleatory uncertainty.	2	<i>K</i> 2	CO5				
21.	Defin	e the auto encoder.	2	<i>K1</i>	CO6				
22.	22. Why is the Gaussian Copula useful in multivariate time series forecasting?								
$PART - C (6 \times 11 = 66 Marks)$									
22	,	Answer ALL Questions	11	νn	COL				
23.	a)	Explain the directed graphical model with an example.	11	K2	CO1				
	• \	OR	11	W2	COL				
	b)	Explain the Potts and Ising models? Analyze their principles and applications in different domains.	11	<i>K</i> 2	CO1				
		different domains.							
24.	a)	Discuss the use of Variable elimination algorithms in graphical model inference.	11	<i>K</i> 2	CO2				
	•••)	OR							
	b)	Explain how message passing is carried out in a junction tree and why it is useful	11	K2	CO2				
	- /	for inference.							
25.	a)	Illustrate and explain the concept of Variational Auto encoders (VAEs) using a	11	K2	CO3				
		well-structured diagram.							
	1.\	OR	11	K2	CO3				
	b)	Write types of sampling and demonstrate the importance sampling.	11	K2	003				
26	2)	Describe briefly about Marked Autoropropries Flour for Density Estimation	11	K2	CO4				
26.	a)	Describe briefly about Masked Autoregressive Flow for Density Estimation	11	K2	CO4				
	1- \	OR	11	K2	CO4				
	b)	Explain are TensorFlow Distributions, and how do they facilitate probabilistic programming and uncertainty estimation in machine learning?	11	K2	004				
		programming and uncertainty estimation in machine learning.							
27.	a)	Explain Bayesian Neural Networks in detail, covering their probabilistic nature,	11	K2	CO5				
	,	inference methods, and real-world applications.							
		OR							
	b)	Explain the concept of Meta-Learning to a real-world machine learning scenario	11	<i>K</i> 2	CO5				
		and demonstrate how it allows models to adapt faster to new tasks by leveraging							
		past experiences.							
28.	a)	Apply the Gaussian Copula framework to model dependencies between multiple	11	К3	CO6				
20.	u)	time series. How does it improve the quality of probabilistic forecasts?							
		OR							
	b)	Construct and explain a DeepAR-based model for forecasting. Compare how it is	11	<i>K3</i>	CO6				
		differ in learning and output generation compared to classical autoregressive							
		models?							