Reg. No.								

Question Paper Code

13707

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Artificial Intelligence and Data Science

(Common to Computer Science and Engineering(AIML))

20BSMA302 - PROBABILITY AND STATISTICAL MODELING

Regulations - 2020

(Use of Parametric and Non Parametric test Tables are permitted)

Dı	uration: 3 Hours Max	. Marl	ks: 10	00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	Marks	<i>K</i> –	co
	Answer ALL Questions			
1.	If A and B are independent events then $P(A/B) =$	1	K1	CO1
	(a) $P(A)$ (b) $P(B)$ (c) $P(A \cap B)$ (d) $\frac{P(A \cap B)}{P(B)}$			
2.	In a binomial distribution, what is E[X]?	1	<i>K1</i>	CO1
2.	(a) npq (b) np (c) $(n+1)$ pq (d) $(n+1)$ p			
3.	If X and Y are independent variables then what is $Cov(X,Y)$	1	<i>K1</i>	CO2
	(a) 0 (b) 1 (c) -1 (d) 2			
4.	The parameters of Bivariate normal distribution are	1	<i>K1</i>	CO2
	(a) μ , ρ (b) μ , γ (c) μ , σ (d) x , s			
5.	Z-test is used to test samples of size	1	<i>K1</i>	CO3
	(a) Greater than 30 (b) Greater than 25 (c) Less than 30 (d) Less than 25			
6.	If the calculated value is less than the table value, in testing a hypothesis we	1	<i>K1</i>	CO3
	(a) Reject null hypothesis (b) Accept null hypothesis			
7	(c) Accept alternative hypothesis (d) None of the above	1	νı	CO1
7.	In testing for the difference between two populations, it is possible to use	1	K1	CO4
	(a) Sign test (b) Wilcoxon signed-rank test (c) Either Sign test or Wilcoxon signed-rank test (d) None of the above			
8.	(c) Either Sign test or Wilcoxon signed-rank test Nonparametric statistics are also called	1	K1	CO4
0.	(a) Distribution free statistics (b) Analysis free statistics	-		
	(c) Mean free statistics (d) None of these			
9.	A rise in prices before a festival is an example of	1	K1	CO5
	(a) Seasonal Variation (b) Secular Trend (c) Irregular Variations (d) Cyclical Variation			
10.	A time series has	1	<i>K1</i>	CO5
	(a) 2 components (b) 3 components (c) 4 components (d) 5 components			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	The mean and variance of a binomial distribution are 4 and $4/3$ respectively. Find $P(X \ge 1)$.	2	K1	CO1
12.	A fair coin is tossed four times. Find the probability that i) more heads than tails are occur ii) tails occur on an even number of tosses.	2	K2	CO1
13.	If A and B are two events with $P(A) = 3/8$, $P(B) = 1/2$ and $P(A \cap B) = 1/4$ then find	2	K2	CO1
	$P(A^{C} \cap B^{C})$.			
14.	Define bivariate normal distribution.	2	K1	CO2
	State central limit theorem.	2	<i>K1</i>	CO2
	A fair die is rolled independently 10 times. Find the probability that the faces 1 to 6 occur	2	<i>K</i> 2	CO2
10.	the following respective number of times: 2, 1, 3, 1, 2, 1.			
17.	Define Type-I and Type-II error.	2	<i>K1</i>	CO3
K1 -	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		1370	<i>97</i>

18.	Define parameter and statistic.	2	KI	CO.
19.	What are the advantages of Non-Parametric test?	2	K1	CO

20. Give the formula to find the rank correlation coefficient in case of tie rank.

21. Define Point estimation. 2 K1 CO5

22. Define autocorrelation function. 2 K1 CO5

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) A random variable *X* has the following probability distribution

Ц	dom variable A has the following probability distribution.											
	X	0	1	2	3	4	5	6	7			
	P(x)	0	K	2K	2K	3K	K^2	$2K^2$	$7 \text{ K}^2 + \text{K}$			

Find (i) the value of K

(ii) P(1.5 < X < 4.5 / X > 2) and

(iii) The smallest value of n for which $P(X \le n) > \frac{1}{2}$.

OR

- b) The number of accidents in a year attributed to taxi drivers in a city follows a Poisson distribution with mean equal to 3. Out of 1000 taxi drivers, find approximately thenumber of drivers with (i) no accident in a year, (ii) more than 3 accidents in a year.
- 24. a) The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability distributions. Also, find P(X + Y > 3).

OR

- b) A life time of a certain brand of an electric bulb may be considered as a RV with 11 K3 CO2 mean 1200h and standard deviation 250 h. Find the probability, using central limit theorem, that the average life time of 60 bulbs exceed 1250h.
- 25. a) The following are the number of mistakes made in 5 successive days by 4 11 K3 CO3 technicians working for a photographic laboratory test at a level of significance 0.01. Test whether the difference among the four samples means can be attributed to chance.

Technician										
I	II	III	IV							
6	14	10	9							
14	9	12	12							
10	12	7	8							
8	10	15	10							
11	14	11	11							

OR

- b) The lines of regression of a bivariate population are: 8x 10y + 66 = 0 and 11 K3 CO3 40x 18y = 214. The variance of x is 9. Find
 - (i) The mean values of x and y
 - (ii) Correlation coefficient between x and y
 - (iii) Standard deviation of y
- 26. a) Apply the K-S test to check that the observed frequencies match with the expected frequencies which are obtained from Normal distribution. (Given at n=7, D(0.10)=0.438).

Test Score	25-30	31-36	37-42	43-48	49-54	55-60	61-66
Observed frequency	9	22	25	30	21	12	6
Expected frequency	6	17	32	35	18	13	4

K3 CO4

11

11

K3 CO1

b) Two methods of instruction to apprentices is to be evaluated. A director assigns 15 randomly selected trainees to each of the two Methods. Due to drop outs, 14 complete in Batch 1 and 12 complete In Batch 2. An achievement test was given to these successful Candidates. Their scores are as follows

K3 CO4

Method I	70	90	82	64	86	77	84	79	82	89	73	81	83	66
Method II	86	78	90	82	65	87	80	88	95	85	76	94		

Test whether the two methods have significant difference in effectiveness. Use Mann- Whitney test at 5% significance level.

Prove that $s^2 = \frac{\sum (X_i - \bar{X})^2}{n}$ is not an unbiased estimator of population variance σ^2 . From that prove $S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$ is biased estimator. K3 CO5 27. a)

- b) For the model (1-0.2B) (1-B) X_t = (1-0.5B) Z_t . Classify the model as an ARIMA (p, d, q) process. Determine whether the process is stationary and invertible. Evaluate the first three ψ weights of the model when expressed as a MA(∞) model.

11 K3 CO5

Below is the table of observed frequencies along with the frequency to the 28. a) (i) observed under anormal distribution.

K3 CO4

Test Score	51-60	61-70	71-80	81-90	91-100
Observed frequency	25	85	400	380	110
Expected frequency	40	110	500	290	60

Calculate the Kolmogorov Smirnov's test statistic.

Show that \bar{X} is consistent estimator of μ in (μ, σ^2) .

CO5

b) (i) In 30 tosses of a coin, the following sequence of head (H) and tails (T) is obtained HTTHTHHHTHTHTHTHTHTHTHTHTHT. Determine the number of runs.

CO4

Find the Maximum Likelihood estimator for θ if $f(x) = \frac{1}{a}e^{-\frac{x}{\theta}}$

5 K3 CO5