Question Paper Code

13579

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Artificial Intelligence and Data Science

(Common to Computer Science and Engineering (AIML))

20BSMA404 - LINEAR ALGEBRA AND ITS APPLICATIONS

Du	ration: 3 Hours	x. Maı	rks· 1	00					
DADT A (MCO) (10 v. 1 10 Mordes)									
	Answer ALL Questions	Marks	K – Level	co					
1	If $v_1 = (1, 2)$ and $v_2 = (3, 4)$, what is the linear combination of $2v_1 + 3v_2$	1	<i>K</i> 2	CO1					
1.	(a) $(5, 10)$ (b) $(7, 10)$ (c) $(11, 18)$ (d) $(8, 14)$								
2.	In LU Decomposition, which matrix is represented as 'L'	1	<i>K1</i>	CO1					
۷.	(a) The diagonal matrix (b) The identity matrix	_							
	· · · · · · · · · · · · · · · · · · ·								
2	(c) The lower triangular matrix (d) The upper triangular matrix Choose the linearly dependent set of vectors from the following 1 K2 CC								
3.	. Choose the initially dependent set of vectors from the following								
	(a) (2, 1), (4,-1) (-2, 2) (b) (2,-3, 6), (4, 6, 12)								
4	(c) (3, 2),(6, 2) (d) (-4, 3), (8,6)	1	W2	con					
4.	Find the value of m such that the vector $(m, 7, -4)$ is a linear combination of vectors	1	KΖ	CO2					
	(-2, 2, 1) and $(2, 1, -2)$.								
	(a) 2 (b) -2 (c) 0 (d) -1								
5.	Let V and W be a vector spaces, and let $T: V \to W$ be linear. If V is finite dimensional,	1	<i>K1</i>	CO3					
	then, $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$ is known as								
	(a) Replacement Theorem (b) Dimension theorem								
	(c) Nullity Theorem (d) Rank Theorem								
6.	Let $T: V \to W$ be a mapping and if $N(T) = \{0\}$, then, T is	1	<i>K1</i>	CO3					
	(a) linear (b) one-one (c) onto (d) none of the above								
7.	In a real inner product space, The inner product is denoted by	1	<i>K1</i>	CO4					
	(a) (u, v) (b) $u \cdot v$ (c) $[u, v]$ (d) $\langle u, v \rangle$								
8.	The primary purpose of the Gram-Schmidt process in linear algebra is	1	<i>K1</i>	CO4					
•	(a) To find a basis of a vector space (b) To orthogonalize a set of vectors								
	(c) To determine the rank of a matrix (d) To compute eigenvalues of a matrix								
9.	SVD stand for	1	<i>K1</i>	CO5					
٦.	(a) Singular Value Decomposition (b) Standard Value Determination								
	(c) Systematic Value Decomposition (d) Singular Value Distribution								
10		1	<i>K1</i>	CO5					
10.	The primary purpose of finear argeora in data science is								
	(a) To visualize data in three dimensions (b) To analyze complex algorithms								
	(c) To model and solve systems of equations (d) To compute statistical measures of data								
	$PART - B (12 \times 2 = 24 Marks)$								
1 1	Answer ALL Questions	2	<i>K</i> 2	CO1					
11.	Find a system of equations that is equivalent to the given vector equation	2	K2	COI					
	$x_1 \begin{bmatrix} -2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 8 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$.								
12.	- [3] - [5] - [6] [0] - [1 2 3]	2	K2	CO1					
12.	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$	_	112	001					
	This the falls of the matrix $A = \begin{bmatrix} 2 & 4 & 0 \end{bmatrix}$.								
13.	Find whether the given system is consistent or inconsistent:	2	<i>K</i> 2	CO1					
15.	3x + 2y = 4; 6x + 4y = 10								
1/1	Define subspace. $3x + 2y = 4, \ 0x + 4y = 10$	2	K1	CO2					
	Determine whether the following set is linearly dependent or linearly independent.	2		CO2					
13.		-	-						
77.1	$\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ in $P_3(R)$. KI - Remember; $K2 - Understand$; $K3 - Apply$; $K4 - Analyze$; $K5 - Evaluate$; $K6 - Create$								
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		133	19					

16	Dofin	a basis of a vactor space V. Give an everple	2	K1	CO2			
		e a basis of a vector space V . Give an example. $R^2 \to R^2$ defined by $T(a_1, a_2) = (2a_1 + a_2, a_1)$. Show that T is linear.	2	K2	CO3			
18.	Let T	$R^3 \to R^2$ defined by $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$. Find N(T).	2	K2	CO3			
		e inner product.	2	K1	CO4			
		der the following polynomials $g(t) = 3t - 2$ in $P(t)$ with the inner product	2	K2	CO4			
		$= \int_0^1 f(t)g(t)dt \text{ Find } g .$						
21.		e Principal component analysis.	2	K1	CO5			
		is total variance?	2	<i>K1</i>	CO5			
		DADT (C (6 v 11 – 66 Mortes)						
PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions								
23.	a) (i)	Solve the system of linear equations by Cramer's rule	6	<i>K3</i>	CO1			
	, (-,	2x + 2y - z = 8, $-3x - y + 2z = -11$, $-2x + y + 2z = -3$						
	(ii)	Solve the following system of equations using LU decomposition:	5	<i>K3</i>	CO1			
		x + y = 5, $2x + 3y = 11$.						
		OR						
	b)	Solve the following system of equations using Gaussian elimination	11	<i>K3</i>	CO1			
		x + y + z = 6, $x + 2y + 3z = 14$, $2x + y + z = 9$.						
24.	a)	Show that $\mathbb{R}^n = \{(x_1, x_2, x_3, \dots, x_n) : x_i \in \mathbb{R}\}$ is a vector space over F with respect	11	<i>K3</i>	CO2			
	,	to addition and scalar multiplication defined component wise.						
		OR						
	b)	Let V be a vector space and $\beta = \{u_1, u_2, u_3,, u_n\}$ be the sub set of V. Then β is	11	<i>K3</i>	CO2			
		the basis for V if and only if each $v \in V$ can be uniquely expressed as a linear						
		combination of vectors of β . that is $v = a_1u_1 + a_2u_2 + a_3u_3 + \cdots + a_nu_n$ for unique scalars $a_1, a_2, a_3, \dots, a_n$.						
		unique scarars $u_1, u_2, u_3, \dots, u_n$.						
25.	a)	Prove that there exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T(1,1) = (1,0,2)$	11	<i>K3</i>	CO3			
		and T $(2,3) = (1, -1,4)$. Find T $(8,11)$.						
		OR			200			
	b)	Let T be linear operator on P ₂ (R) defined by $T(f(x)) = f(1) + f'(0)x + f'(0)$	11	<i>K3</i>	CO3			
		$(f'(0) + f''(0))x^2$. Test T for diagonalizability, and if, finds the basis for β for V						
		such that $[T]_{\beta}$ is a diagonal matrix.						
26.	a) (i)	Find a least – squares solution of the inconsistent system Ax = b for	6	<i>K3</i>	CO4			
		$\begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$						
		$A = \begin{vmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{vmatrix}, b = \begin{vmatrix} 2 \\ 0 \\ 11 \end{vmatrix}.$						
			_	***	go.4			
	(ii)	$\lceil 3 \rceil$ $\lceil 1 \rceil$	5	K3	CO4			
		Let $W = Span\{X_1, X_2\}$, Where $X_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $X_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal						
		basis $\{v_1, v_2\}$ for W.						
		OR						
	b)	Determine a QR factorization of $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.	11	<i>K3</i>	CO4			
		Determine a QR factorization of $A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$.						

Determine a QR factorization of $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

27. a) For the covariance matrix $\Sigma = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, determine the principal components and the proportion of variance accounted by the principal components.

- Compute the singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$. b) K3 CO5
- 28. a) (i) State and prove Cauchy-Schwarz inequality. CO4
 - (ii) Determine the matrix U such that $A = U \sum V^T$, where $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$. K3 CO5

- Show that $\{u_1, u_2, u_3\}$ is an orthogonal set, where $u_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} \frac{-1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}$ b) (i)
 - K3 CO5 (ii) Explain how linear algebra is used in principal Component Analysis and its important in data science.